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Abstract

A simple spinning composite shaft model is presented in this paper. The composite shaft contains discrete isotropic

rigid disks and is supported by bearings that are modeled as springs and viscous dampers. Based on a first-order shear

deformable beam theory, the strain energy of the shaft are found by adopting the three-dimensional constitutive re-

lations of material with the help of the coordinates transformation, while the kinetic energy of the shaft system is

obtained via utilizing the moving rotating coordinate systems adhered to the cross-sections of shaft. The extended

Hamilton�s principle is employed to derive the governing equations. In the model the transverse shear deformation,

rotary inertia and gyroscopic effects, as well as the coupling effect due to the lamination of composite layers have been

incorporated. To verify the present model, the critical speeds of composite shaft systems are compared with those

available in the literature. A numerical example is also given to illustrate the frequencies, mode shapes, and transient

response of a particular composite shaft system.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite-material shafts have been sought as new potential candidates for replacement of the

conventional metallic shafts in many application areas. This may be attributed to the improved perfor-

mance of the shaft system resulting from the use of the composite materials. It was in fact demonstrated by
Faust et al. (1984) via testing the composite transmission shafts of twin-propeller helicopters that the

composite shaft not only is lighter in weight and has a lower vibration level, but also has greater strength

and a longer service life compared with its metallic counterparts. Accompanied by the development of

many new advanced composite materials, various mathematical models of spinning composite shafts were

also developed by researchers. They include Zinberg and Symonds (1970) who used an equivalent modulus

beam theory (EMBT) to model the composite shaft and compared the critical speeds with those of the tests
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they had performed. dos Reis et al. (1987) incorporated the Timoshenko beam theory with the Donnell thin

shell theory to derive the stiffness matrix of rotating composite shafts. They then adopted the approximate

finite element approach of Ruhl and Booker (1972) to derive the equations of motion of systems. The model

was used to analyze the critical speeds of thin-walled composite shafts.
Kim and Bert (1993) adopted a shell theory of first-order approximation to derive the governing

equations of the rotating composite thin-walled shafts. They used this model to analyze the critical

speeds of various types of composite shafts. Bert (1992) based on the Bernoulli–Euler theory developed

the governing equations of composite shafts. The model has included the gyroscopic as well as the

bending and torsion coupling effects. Bert and Kim (1995) further considered the Bresse–Timoshenko

beam theory and employed the Hamilton�s principle to derive the equations of motion of the composite

shafts. They found that the transverse shear deformation effect is important in the determination of the

critical speeds of the short shafts. Singh and Gupta (1996) presented two composite spinning shaft
models based on an EMBT and a layerwise beam theory respectively. In the latter shaft model, the

strain–displacement relations of the layerwise cylindrical shell theory considered by Alam and Asnani

(1984) were adopted. They found that a discrepancy exists between the critical speeds obtained from

these two models for the case of the unsymmetric laminated composite shaft, which they attributed to the

effect of the bending and stretching deformation. Song et al. (2001) developed a composite thin-walled

shaft model based on a thin-walled beam theory. This model was used to investigate the natural fre-

quencies and stability of the system subject to the variation of the axial edge load and the lamination

angle of the composite layer.
The shaft models being discussed above are mostly based on shell theories, or beam theories combined

with the strain–displacement relations of the shell theories, or a thin-walled beam theory. In this paper,

another simple composite shaft model based on a first-order beam theory is proposed. Here, however, the

pertinent strain–displacement and the constitutive relations for laminated composite shafts are directly

derived from those of three-dimensional continua through multiple coordinate transformations and the

thinness of the wall of the shaft is not assumed. The composite shaft is assumed supported by bearings,

which are modeled as springs and dampers, and has discrete isotropic rigid disks attached to it. The

governing equations of system are obtained by employing the extended Hamilton�s principle.
To determine the spinning shaft system�s responses, the numerical finite element method is used here to

approximate the governing equations by a system of ordinary differential equations. Based on these ap-

proximate equations the critical speeds of the spinning composite shaft systems are then analyzed. The

results are found in agreement with those found in the literature. For a further illustration of the present

shaft model, the frequencies, mode shapes, and the transient response caused by the unbalance force of a

rigid disk, of a particular spinning composite shaft system are given. The transient response of the spinning

shaft is obtained by using two independent procedures, the modal versus Newmark-b methods. The

closeness of the results obtained from these two approaches does indicate the correctness of the numerical
analyses performed in the paper.
2. Theoretical formulations

2.1. Composite shaft

Before apply the extended Hamilton�s principle, firstly, the kinetic energy and strain energy of the

laminated composite shaft will be derived. The constitutive relations for a lamina (see Fig. 1) in the

principal material directions (indicated by 1, 2 and 3) are given by (see e.g., the monograph of Vinson and
Sierakowski, 1986)



1

2

3

Fig. 1. A typical composite lamina and its principal material axes.
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The above equation will be abbreviated as
frg ¼ ½Q�feg ð2Þ

where ½Q� is the stiffness matrix. Consider an arbitrary layer of the laminate whose fiber direction makes an

angle g with respect to the x-axis of the cylindrical coordinate system ðx; r; hÞ as shown in Fig. 2. Then the
stress–strain relations of the components expressed in this chosen cylindrical coordinate system can be

written as (Vinson and Sierakowski, 1986)
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ð3Þ
Fig. 2. The definitions of the principal material coordinate axes on an arbitrary layer of the composite shaft.
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The above equation will be expressed in abbreviated form as
frg ¼ ½Q�feg ð4Þ
where ½Q� is the transformed stiffness matrix of the layer, and
½Q� ¼ ½T ��1½Q�½T ��T ð5Þ
in which
½T � ¼

m2 n2 0 0 0 2mn
n2 m2 0 0 0 �2mn
0 0 1 0 0 0

0 0 0 m �n 0

0 0 0 n m 0

�mn mn 0 0 0 ðm2 � n2Þ

26666664

37777775 ð6Þ
and
m ¼ cos g; n ¼ sin g ð7Þ
Next, the kinetic energy of the composite shaft will be derived. It is assumed here that the size and the shape

of the shaft�s cross-sections remain unchanged during the motion. For an arbitrarily point P on a typical

cross-section of shaft (referring to Fig. 3), its new position (resulting from the axial, bending, transverse

shear and torsion deformation, and the spinning of the shaft) can be described by using a set of reference
coordinates x0–y0–z0 fixed to the cross-section of shaft. According to the above assumption of the cross-

sections, the distance between point P and the center of the cross-section G will remain the same during the

motion. Hence, the displacement vector R
*

P=O, where point O (it coincides with the centroid G of the cross-

section before deformation) is the origin of an inertial Cartesian coordinate system, can be expressed as

(Chang and Jan, 1996)
Fig. 3. The displacement of an arbitrary point p on the cross-section of the shaft.
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In the above equation i
*

, j
*

, k
*

are unit vectors of the inertia coordinate system X–Y –Z, and i
*0
, j
*0
, k
*0

are

those of rotating coordinate system x0–y 0–z0, while u; v;w represent the displacement components of the

centroid G of the cross-section of shaft in the X , Y and Z directions due to flexural deformation. By the use

of the coordinate transformation, the displacement vector R
*

P=O can be expressed in terms of the inertia
reference frame X–Y –Z as
R
*

P=O ¼ ðu� y0by coswþ y 0bx sinwþ z0by sinwþ z0bx coswÞ i
*

þ ðvþ y0 coswþ y0bxby sinw� z0 sinwþ z0bxby coswÞ j
*

þ ðwþ y 0 sinwþ z0 coswÞk
*

ð9Þ

Here by , bx, w can be regarded as the 3–2–1 set of Euler�s angles and represent the rotation angles of the

cross-sections about z, y and x axes respectively (see Fig. 4). The rotation angle w can be resolved into two
parts as w ¼ /þ Xt, where / is the angular displacement of the cross-sections due to the torsion defor-

mation of the shaft, and X is the spinning speed of shaft, which is assumed constant. On the derivation of

Eq. (9), the rotation angles bx, by are assumed small compared with the unity. In the subsequent analysis,

the torsion angle / will also be treated as a small quantity compared with the unity (Fig. 4).

In view of Eq. (9), the kinetic energy Ts of the composite shaft can be expressed as
Ts ¼
1

2

Z
V
qð

_
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R
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P=O �
_
R
*

R
*

P=OÞdV

¼ 1

2

Z L

0

fImð _uu2 þ _vv2 þ _ww2Þ þ Idð _bb2
x þ _bb2

yÞ � 2XIpbx
_bby þ Ip _//2 þ 2XIp _//þ X2Ip þ X2Idðb2

x þ b2
yÞgdx

ð10Þ

where L is the total length of the shaft, the 2XIpbx

_bby term accounts for the gyroscopic effect, and Idð _bb2
x þ _bb2

yÞ
represents the rotary inertia effect. The mass quantity Im denotes the mass per unit length of the shaft, while

Id the diametrical mass of inertia and Ip the polar mass of inertia of the cross-section of the shaft. They are

defined as follows:
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Fig. 4. The elastic displacements of a typical cross-section of the shaft.
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Im ¼ p
Xn

i¼1

qiðr2iþ1 � r2i Þ

Id ¼
p
4

Xn

i¼1

qiðr4iþ1 � r4i Þ

Ip ¼
p
2

Xn

i¼1

qiðr4iþ1 � r4i Þ

ð11Þ
Here n is the number of layers in the laminate, and ri and riþ1 are the inner and outer radii of the ith layer.

As the X2Idðb2
x þ b2

yÞ term in Eq. (10) is far smaller than X2Ip, it will be neglected in the further analysis. By

taking the first variation of kinetic energy yields
dTs ¼
Z L

0

Im _uu
odu
ot

��
þ _vv

odv
ot

þ _ww
odw
ot

�
þ Id _bbx

odbx

ot

�
þ _bby

odby

ot

�
� IpX _bbydbx

�
þ bx

odby

ot

�
þ Ip _//d _//þ IpXd _//

�
dx ð12Þ
To derive the strain energy expression of the composite shaft, the following form of the displacement

fields of the shaft are assumed.
uxðx; y; z; tÞ ¼ uðx; tÞ þ zbxðx; tÞ � ybyðx; tÞ
uyðx; y; z; tÞ ¼ vðx; tÞ � z/ðx; tÞ
uzðx; y; z; tÞ ¼ wðx; tÞ þ y/ðx; tÞ

ð13Þ
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where ux, uy and uz are the flexural displacements of any point on the cross-section of the shaft in the x, y
and z directions. As shown in Fig. 4, the variables u, v and w denote the flexural displacements in the x, y
and z directions of the points on the reference axis of the shaft, while /, bx and by are the rotation angles of

the cross-section, about the x-, y- and z-axis respectively, due solely to the elastic deformation of the shaft.
Here the x–y–z is a coordinate system attached to a translating frame with the origin located at the center of

the cross-section such that its axes remain parallel to the inertia reference frame X–Y –Z.
The linear elastic and small deflection theory is adopted in this paper. According to this theory, the linear

strain–displacement relations based on the above displacement assumption can be shown to be
exx ¼
ou
ox

þ z
obx

ox
� y

oby

ox
eyy ¼ ezz ¼ eyz ¼ 0
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1

2

�
� by þ

ov
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� z
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2
bx

�
þ ow

ox
þ y

o/
ox

�
ð14Þ
Since the shapes of the cross-sections of the composite shaft are assumed circular, it is more convenient to

express the stress–strain relations of the composite material of the shaft using the cylindrical coordinate

system (Fig. 5). The strain components in this coordinate system can be expressed in terms of their

counterparts in the Cartesian coordinate system as (see, e.g., a textbook by Fung, 1994)
exx
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Here m ¼ cos h and n ¼ sin h. Considering Eqs. (14) and (15) and letting y ¼ r cos h, z ¼ r sin h, the strain

components in the cylindrical coordinate system can be written in terms of the displacement variables

defined earlier as
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ð16Þ
The stress–strain relations of the ith layer expressed in the cylindrical coordinate system can be expressed as
rxx ¼ Q11iexx þ ksQ16icxh

sxh ¼ ksQ16iexx þ ksQ66icxh

sxr ¼ ksQ55icxr

ð17Þ
where ks is the shear correction factor proposed by Dharmarajan and McCutchen (1973).
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The strain energy of the composite shaft Us can be written as
Us ¼
1

2

Z
V
½r�T½e�dV ¼ 1

2

Z
V
ðrxxexx þ rrrerr þ rhhehh þ 2sxrexr þ 2sxhexh þ 2srherhÞdV ð18Þ
Taking variation of the above strain energy expression and considering Eq. (16), one obtains
dUs ¼
Z
V
ðrxxdexx þ 2sxrdexr þ 2sxhdexhÞdV

¼
Z
V

rxx
odu
ox

��
þ r sin h

odbx

ox
� r cos h

odby
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�
þ sxr sin hdbx

�
� cos hdby þ cos h

odv
ox

þ sin h
odw
ox

�

þ sxh cos hdbx

�
þ sin hdby � sin h
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þ r
od/
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��
dV ð19Þ
Define the following stress resultants Nx, Qð1Þ
xr , Q

ð2Þ
xr , Q

ð1Þ
xh , Q

ð2Þ
xh and stress couples My , Mz, Mxh as
Nx ¼
Z
A
rxx dA; My ¼

Z
A
rxxr sin hdA;

Mz ¼
Z
A
rxxr cos hdA; Mxh ¼

Z
A
sxhrdA;

Qð1Þ
xr ¼

Z
A
sxr sin hdA; Qð2Þ

xr ¼
Z
A
sxr cos hdA;

Qð1Þ
xh ¼

Z
A
sxh sin hdA; Qð2Þ

xh ¼
Z
A
sxh cos hdA:

ð20Þ
Making use of the variables defined in Eq. (20), Eq. (19) can be written as
dUs ¼
Z L

0
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�
þMy
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�Mz

odby
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þMxh

od/
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�
dx ð21Þ
Furthermore, by taking into account of Eqs. (16) and (17), the stress resultants and stress couples defined in

Eqs. (20) can be expressed in terms of the displacement variables as
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in which
A11 ¼ p
Xn

i¼1

Q11iðr2iþ1 � r2i Þ

A55 ¼
p
2

Xn

i¼1

Q55iðr2iþ1 � r2i Þ

A66 ¼
p
2

Xn

i¼1

Q66iðr2iþ1 � r2i Þ

B16 ¼
2p
3

Xn

i¼1

Q16iðr3iþ1 � r3i Þ

D11 ¼
p
4

Xn

i¼1

Q11iðr4iþ1 � r4i Þ

D66 ¼
p
2

Xn

i¼1

Q66iðr4iþ1 � r4i Þ

ð23Þ
2.2. Kinetic energy of disks

The disks fixed to the shaft are assumed rigid and made of isotropic materials. According to Eq. (10) the

kinetic energy of the disks can be expressed as
TD ¼ 1

2

Z L

0

XnD
j¼1

IDmjð _uu2
n

þ _vv2 þ _ww2Þ þ IDdjð _bb
2
x þ _bb2

yÞ � 2XIDdjbx
_bby þ IDpj _//

2 þ 2XIDpj _//þ X2IDpj
o
Dðx� xDjÞdx

ð24Þ

where IDmj, I

D
dj and IDpj are the mass, the diametrical mass moment of inertia and the polar mass moment of

inertia of the disk j. The symbol Dðx� xDjÞ denotes the one-dimensional spatial Dirac delta function, nD the

number of the discrete disks attached to the shaft and xDj the location of the jth disk. Taking variation of
TD yields
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dTD ¼
Z L

0

XnD
j¼1

IDmj _uu
odu
ot

��
þ _vv

odv
ot

þ _ww
odw
ot

�
þ IDdj _bbx

odbx

ot

�
þ _bby

odby

ot

�
� IDpjX _bbydbx

�
þ bx

odby

ot

�
þ IDpj _//d _//þ IDpjXd _//

�
Dðx� xDjÞdx ð25Þ
2.3. Work of external loads and bearings

Supposed that the shaft is subjected to external force intensities (force per unit length) px, py and pz, and
external torque intensities (moment per unit length) Cx, Cy and Cxh distributed along the shaft. All external

loads are assumed to be functions of x and t. Then the virtual work done by these external loads can be

written as
dWe ¼
Z L

0

ðpxduþ pydvþ pzdwþ Cxdbx þ Cydby þ Cxhd/Þdx ð26aÞ
The stiffness and damping effects of the bearings are modeled using springs and viscous dampers. The

virtual work done by these elements can be expressed as (Lalanne and Ferraris, 1990)
dWb ¼
Z L

0

Xnb
j¼1

ð�Kbj
YY vdv� Kbj

ZY vdw� Kbj
YZwdv� Kbj

ZZwdw� Cbj
YY _vvd _vv� Cbj

ZY _vvd _ww� Cbj
YZ _wwd_vv� Cbj

ZZ _wwd _wwÞ

� Dðx� xbjÞdx ð26bÞ

Here nb denotes the number of the bearings, xbj the location, and Kbj and Cbj the equivalent stiffness and

damping coefficients of the jth bearings.

2.4. Governing equations of system

By taking into account of the energy expressions derived above and invoking the extended Hamilton�s
principle (see, e.g., Meirovitch, 1990), which is
Z t2

t1

½dðTs þ TDÞ � dUs þ dWb þ dWe�dt ¼ 0 ð27Þ
The equations of the motion can be shown to be the following:
du : Im
o2u
ot2

� oNx

ox
þ
XnD
j¼1

IDmj

o2u
ot2

Dðx� xDjÞ ¼ px

dv : Im
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þ
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Dðx� xDjÞ þ F b
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þ
XnD
j¼1
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o2w
ot2

Dðx� xDjÞ þ F b
W ¼ Pz
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o2bx

ot2
þ IpX

oby

ot
� oMy

ox
þ Qð2Þ

xh þ Qð1Þ
xr þ

XnD
j¼1

IDdj
o2bx

ot2
Dðx� xDjÞ ¼ Cx

dby : Id
o2by

ot2
� IpX

obx

ot
þ oMz

ox
þ Qð1Þ

xh � Qð2Þ
xr þ

XnD
j¼1

IDdj
o2by

ot2
Dðx� xDjÞ ¼ Cy

d/ : Ip
o2/
ot2

� oMxh

ox
þ
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j¼1
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Dðx� xDjÞ ¼ Cxh

ð28aÞ
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where
F b
V ¼

Xnb
j¼1

Kbj
YY v

�
þ Kbj

YZwþ Cbj
YY _vvþ Cbj

YZ _ww
�
Dðx� xbjÞ

F b
W ¼

Xnb
j¼1

Kbj
ZZw

�
þ Kbj

ZY vþ Cbj
ZZ _wwþ Cbj

ZY _vv
�
Dðx� xbjÞ

ð28bÞ
In view of Eq. (28a) and the stress resultant–displacement and stress couple–displacement relations,

Eq. (22), the governing equations of the composite shaft systems can be shown to be the following:
du : Im
o2u
ot2

� A11

o2u
ox2

� ksB16

o2/
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þ
XnD
j¼1
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dv : Im
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þ ksðA55 þ A66Þ
oby

ox

�
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�
þ 1

2
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16

o2bx
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þ
XnD
j¼1
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o2v
ot2

Dðx� xDjÞ þ F b
V ¼ py

dw : Im
o2w
ot2

� ksðA55 þ A66Þ
o2w
ox2

�
þ obx

ox

�
� 1

2
ksB16

o2by

ox2
þ
XnD
j¼1

IDmj

o2w
ot2

Dðx� xDjÞ þ F b
W ¼ Pz

dbx : Id
o2bx

ot2
þ IpX

oby

ot
þ 1

2
ksB16

o2v
ox2

� D11

o2bx

ox2
þ ksðA55 þ A66Þ

ow
ox

�
þ bx

�

� ksB16

oby

ox
þ
XnD
j¼1

IDdj
o2bx

ot2
Dðx� xDjÞ ¼ Cx

dby : Id
o2by

ot2
þ IpX

obx

ot
þ 1

2
ksB2

16

ow
ox2

� D11

o2by

ox2
� ksðA55 þ A66Þ

ov
ox

�
� by

�
þ ksB16

obx

ox

þ
XnD
j¼1

IDdj
o2by

ot2
Dðx� xDjÞ ¼ Cy

d/ : Ip
o2/
ot2

� ksB16

o2u
ox2

� ksD66

o2/
ox2

þ
XnD
j¼1

IDpj
o2/
ot2

Dðx� xDjÞ ¼ Cxh

ð29Þ
The boundary conditions of the system are defined by specifying at both ends of the shaft the value of only
one variable from each pair of the following six pairs of variables: ðNx; uÞ, ðQy ; vÞ, ðQz;wÞ, ðMy ; bxÞ, ðMz; byÞ,
and ðMxh;/Þ. Here Qy ¼ Qð2Þ

xr � Qð1Þ
xh and Qz ¼ Qð1Þ

xr þ Qð2Þ
xh .

Next, the analysis of responses of the spinning shaft�s systems based on the above shaft model will be

discussed.
2.5. Approximate solution method

The finite element method is used here to find the approximate solution of the system. By employing this

method, the governing equations are approximated by a system of ordinary differential equations. In the

present finite element model, the three-node one-dimensional line elements, each node having 6 degrees of
freedom, interpolated using Lagrangian interpolation functions are used to approximate the displacement

fields of shaft. The displacement field variables can then be expressed as
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u ¼
X3

i¼1

uiðtÞuiðxÞ; bx ¼
X3

i¼1

bi
xðtÞuiðxÞ

v ¼
X3

i¼1

viðtÞuiðxÞ; by ¼
X3

i¼1

bi
yðtÞuiðxÞ

w ¼
X3

i¼1

wiðtÞuiðxÞ; / ¼
X3

i¼1

/iðtÞuiðxÞ

ð30Þ
in which
u1 ¼
�nð1� nÞ

2
; u2 ¼ 1� n2; u3 ¼

nð1þ nÞ
2

:

The ui, i ¼ 1, 2, 3, are the interpolation functions and n is the natural coordinate whose values varies

between )1 and 1. Substituting the above expressions of displacement variables into the governing equa-

tions and applying the Galerkin procedure, the following matrix equations of motion of the spinning shaft

system can be found.
½M �f€qqg þ ðX½G� þ ½C�Þf _qqg þ ½K�fqg ¼ fF g ð31Þ
where ½M � represents the mass matrix, ½G� the gyroscopic matrix, ½C� the damping matrix, ½K� the stiffness

matrix, fF g the external force vector and fqg the displacement vector. The detailed expressions of these

matrices can be found in Appendix A.

The damping matrix ½C� has included in addition to the viscous damping of the bearings the proportional

viscous damping of the shaft. It can be expressed as
½C� ¼ ½Cb� þ ½Cp� ð32aÞ
where
½Cp� ¼ ½M �½U�½eCC �½U�T½M � ð32bÞ
and denotes the proportional viscous damping matrix. The matrix ½U� is the modal matrix such that
½U�T½M �½U� ¼ ½I �; ½U�T½K�½U� ¼ ½K� ð33a;bÞ
and
½eCC � ¼

2f1x1

2f2x2 0

2f3x3

0 . .
.

2fNxN

2666664

3777775 ð33cÞ
in which xi and 1i are the natural frequencies of the undamped non-rotating shaft system and the modal

damping ratios respectively.

In the following section the responses of the spinning composite shaft system are studied based on the

approximate equations of motion, Eq. (31).



M.-Y. Chang et al. / International Journal of Solids and Structures 41 (2004) 637–662 649
3. Numerical examples

In the following examples, first, the lowest critical speeds of composite shafts are analyzed and compared

with those available in the literature to verify the present model. Several methods can be used to determine
the critical speeds of a rotating shaft. They include the commonly known Campbell diagram method (see

e.g., Lalanne and Ferraris, 1990), as well as the whirling frame method (only suitable for the undamped

systems) and the sensitivity method. The latter two methods were developed by Nelson and Mcvaugh

(1976) and Nelson et al. (1986), and are adopted in this paper.

In the first example, the composite hollow shafts made of boron/epoxy laminae, which are considered by

Bert and Kim (1995), are investigated. The properties of the material are listed in Table 1. The shaft has a

total length of 2.47 m. The mean diameter D and the wall thickness of the shaft are 12.69 cm and 1.321 mm

respectively. The lay-up is [90�/45�/)45�/0�6/90�] starting from the inside surface of the hollow shaft. A
shear correction factor of 0.503 is also used. The shaft is modeled by 20 finite elements of equal length. The

supporting bearings are modeled as springs whose stiffness are Kyy ¼ Kzz ¼ 1740 GN/m and Kyz ¼ Kzy ¼ 0.

The result obtained using the present model is shown in Table 2 together with those of referenced papers.

As can be seen from the table our results are close to those predicted by other beam theories. Since in the

studied example the wall of the shaft is relatively thin, models based on shell theories (Kim and Bert, 1993)

are expected to yield more accurate results. In the present example, the critical speed measured from the

experiment however is still underestimated by using the Sander shell theory while overestimated by the
Table 1

Properties of composite materials (Bert and Kim, 1995)

Boron–epoxy Graphite–epoxy

E11 (GPa) 211.0 139.0

E22 (GPa) 24.1 11.0

G12 ¼ G13 (GPa) 6.9 6.05

G23 (GPa) 6.9 3.78

m12 0.36 0.313

Density (kg/m3) 1967.0 1578.0

Table 2

The critical speed of the boron–epoxy composite shaft

Theory or method First critical speed (rpm)

Zinberg and Symonds (1970) Measured experimentally 6000

EMBT 5780

dos Reis et al. (1987) Bernoulli–Euler beam theory with stiffness deter-

mined by shell finite elements

4942

Kim and Bert (1993) Sanders shell theory 5872

Donnell shallow shell theory 6399

Bert (1992) Bernoulli–Euler beam theory 5919

Bert and Kim (1995) Bresse–Timoshenko beam theory 5788

Singh and Gupta (1996) EMBT 5747

LBT 5620

Present Continuum based Timoshenko beam theory 5762
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Donnell shallow shell theory. When the material of the shaft is changed to the graphite–epoxy given in

Table 1 with other conditions left unchanged, the critical speed obtained from the present model is shown in

Table 3. In this case, the result from the present model is compatible to that of the Bresse–Timoshenko

beam theory of Bert and Kim (1995).
Next, comparisons are made with those of Bert and Kim (1995) for different length to mean diameter

ratios, L=D. The shafts being analyzed are made of the graphite–epoxy material given in Table 1 and all

have the same lamination [90�/45�/)45�/0�6/90�]. The mean diameter and the wall thickness of the shaft

remain the same as the previous examples. The shear correction factor being used is again 0.503. The results

are listed in Table 4. Further results being compared are for generalized orthotropic composite tube of

different lamination angles g. The results are shown in Table 5.

From the thin-walled shaft systems studied above, the present shaft model yields results in all cases close

to those of the model of Bert and Kim (1995) based on the Bresse–Timoshenko theory. One should stress
here that the present model is not only applicable to the thin-walled composite shafts as studied above, but

also to the thick-walled shafts as well as to the solid ones.
Table 5

The critical speeds (rpm) of the generally orthotropic of graphite–epoxy composite shaft for various lamination angles

Theory Lamination angle g (�)

0 15 30 45 60 75 90

Bert and Kim

(1995)

Sanders shell 5527 4365 3308 2386 2120 2020 1997

Bermoulli–Euler 6425 5393 4269 3171 2292 1885 1813

Bresse–Timoshenko 6072 5209 4197 3143 2278 1874 1803

Present 6072 5331 4206 3124 2284 1890 1816

Table 3

The critical speed of the graphite–epoxy composite shaft

Theory First critical speed (rpm)

Bert and Kim (1995) Sanders shell theory 5349

Donnell shallow shell theory 5805

Bernoulli–Euler beam theory 5302

Bresse–Timoshenko beam theory 5113

Present Continuum-based Timoshenko beam theory 5197

Table 4

The critical speed (rpm) of graphite–epoxy composite shaft for various length to mean diameter ratios

Theory L/D

2 5 10 15 20 25 30 35

Bert and Kim

(1995)

Sanders shell 112,400 41,680 16,450 8585 5183 3441 2440 1816

Bernoulli–Euler 329,600 76,820 20210 9072 5121 3283 2282 1677

Bresse–Timoshenko 176,300 54,830 17,880 8543 4945 3209 2246 1658

Present 181,996 55,706 17,929 8527 4925 3192 2233 1648
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In the following example, the frequencies, mode shapes, as well as the transient response, of a graphite–

epoxy composite shaft system are analyzed. The material properties are those listed in Table 1. The lam-

ination scheme of the shaft remains the same as previous examples, while its geometric properties, the

properties of a uniform rigid disk, and the properties of the springs and viscous dampers modeling the
support conditions are listed in Table 6. The disk is placed at the mid-span of the shaft and assumed its

center of mass have a small distance of eccentricity e away its geometric center. The shaft system is shown in

Fig. 6. For the finite element analysis, the shaft is divided into 6 elements of equal length.

First, the Campbell diagram containing the frequencies of the first five pairs of bending whirling modes

of the above composite system is shown in Fig. 7. Denote the ratio of the whirling bending frequency and

the rotation speed of shaft as c. The intersection point of the line c ¼ 1 with the whirling frequency curves

indicate the speed at which the shaft will vibrate violently (i.e., the critical speed). In Fig. 7 the second pair

of the forward and backward whirling frequencies falls more wide apart in contrast to other pairs of
whirling modes. This might be due to the coupling of the pitching motion of the disk with the transverse

vibration of shaft. Note that the disk is located at the mid-span of the shaft, while the second whirling

forward and backward bending modes are skew-symmetric with respect to the mid-span of the shaft as

shown Fig. 9. Next, consider the case that the shaft starts from rest and assume it instantly arrives at the

speed of 6000 rpm. The first 10 eigenvalues that correspond to 5 forward (F) and 5 backward (B) whirling

bending modes of the shaft running at 6000 rpm are listed in Table 7. The mode shapes corresponding

to these eigenvalues modes are illustrated in Figs. 8–12. In these figures, the modes are shown in the
Table 6

The dimensions and properties of the composite shaft system

Shaft Disk Bearings

Total length (m) 0.72

Modal damping ratios 0.01

Inner diameter (m) 0.028

Outer diameter (m) 0.048

Shear correction factor 0.56

IDm (kg) 2.4364

e (10�5 m) 5.0

IDp (kgm2) 0.3778

IDd (kgm2) 0.1901

Kyy ¼ Kzz (10
7 N/m) 1.75

Cyy ¼ Czz (10
2 N s/m) 5.0

Fig. 6. A bearings-supported flexible shaft containing a rigid disk.



Fig. 7. The Campbell diagram of a composite shaft system ((––) forward modes, (- - -) backward modes).

Table 7

The eigenvalues corresponding to the lowest five forward and backward whirling bending modes of the composite shaft running at

6000 rpm

Mode Real part Imaginary part

1B )9.985 902.867

1F )9.996 903.566

2B )8.530 826.702

2F )21.681 2048.076

3B )423.449 7841.506

3F )423.385 7868.068

4B )484.578 8215.352

4F )484.748 8218.171

5B )1513.563 16305.428

5F )1511.597 16332.143
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three-dimensional reference frame as well as in two-dimensional projected views. It can be seen that the first

and fourth modes are symmetric while others are the anti-symmetric bending modes.
Lastly, the transient response of the above composite shaft system is illustrated. The vibration of the

shaft is caused by the centrifugal force resulting from the unbalanced rigid disk. For the purpose of the

verification of the numerical results, the transient response of the composite shaft is obtained by using two

different approaches. In the first method, the transient response is obtained by integrating directly the finite

element equation, Eq. (31), using the Newmark-b algorithm, while in the second approach, Eq. (31) is

solved using the modal analysis method as was done in Chang and Jan (1996). The steady state response of

the shaft determined by the method proposed by Nelson and Mcvaugh (1976) is also shown in the figures

for comparison. In the simulation, the time step of 0.0002 s is adopted in both Newmark-b and the modal
analysis methods. The first four pairs of forward and bending whirling modes in Table 7 are considered in

the modal analysis method. The total time-interval of simulation is 0.24 s. The transverse displacements of

the geometric center of the disk in the directions of the inertia coordinate Y and Z obtained respectively

using the above two methods are plotted in Figs. 13 and 14. The two figures look very similar. It can be seen
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from the figures that though the transient response starts with a fluctuation of displacement, it converges

quite rapidly to the steady response as a result of the damping action.
4. Concluding remarks

A simple composite spinning shaft model is presented in this paper. By employing multiple transfor-

mations of coordinate systems, a spinning isotropic shaft model considered previously by Chang and Jan

(1996) is extended here to the case of laminated composite shafts. It has been demonstrated that our

continuum-based beam model is compatible to some beam theories available in the literatures. The present

model can be served as a viable alternative for the vibration analysis of the spinning laminated composite
shafts.
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Appendix A. Mass, gyroscopic and stiffness matrices of the laminated composite shaft elements

The nodal generalized displacements fqeg is a column matrix whose transpose is defined as
fqegT ¼ fU egTfV egTfW egfbe
xg

Tfbe
yg

Tf/egT
n o

1�18
The corresponding element matrices are as follows:



0
5

10
15

-2

0

2

x 10-6

-2

0

2
x 10-5

X - axis 
Y - axis 

Z
-a

xi
s

0
5

10
15

-2

0

2

x 10-5

-2

0

2
x 10-6

X - axis 
Y - axis 

Z
-a

xi
s

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-6

X - axis 

Y
-a

xi
s

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-5

X - axis 

Y
-a

xi
s

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-5

X - axis

Z
-a

xi
s

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5 x 10-6

X - axis 

Z
-a

xi
s

(e) 3rd Bending Mode (BW) 

3B = 1249.8 Hz 
(f) 3rd Bending Mode (FW) 

3Fωω = 1254.1 Hz 

Fig. 10. The third backward (e) and forward (f) whirling bending mode shapes of a composite shaft system running at 6000 rpm.

M.-Y. Chang et al. / International Journal of Solids and Structures 41 (2004) 637–662 655
A.1. Mass matrix
½M e� ¼

½M11�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½M22�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½M33�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½M44�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½M55�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½M66�3�3

26666664

37777775
18�18
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in which
M11
ij ¼

Z xb

xa

Imuiuj dxþ
Z xb

xa

XnD
k¼1

IDmuiujDðx� xDkÞdx

M22
ij ¼

Z xb

xa

Imuiuj dxþ
Z xb

xa

XnD
k¼1

IDmuiujDðx� xDkÞdx
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Fig. 12. The fifth backward (i) and forward (j) whirling bending mode shapes of a composite shaft system running at 6000 rpm.
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M33
ij ¼

Z xb

xa

Imuiuj dxþ
Z xb

xa

XnD
k¼1

IDmuiujDðx� xDkÞdx

M44
ij ¼

Z xb

xa

Iduiuj dxþ
Z xb

xa

XnD
k¼1

IDd uiujDðx� xDkÞdx

M55
ij ¼

Z xb

xa

Iduiuj dxþ
Z xb

xa

XnD
k¼1

IDd uiujDðx� xDkÞdx
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M66
ij ¼

Z xb

xa

Ipuiuj dxþ
Z xb

xa

XnD
k¼1

IDp uiujDðx� xDkÞdx
A.2. Gyroscopic matrix
½Ge� ¼

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½G45�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½G54�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

2666666664

3777777775
18�18
in which
G45
ij ¼

Z xb

xa

Ipuiuj dxþ
Z xb

xa

XnD
k¼1

IDp uiujDðx� xDkÞdx

G54
ij ¼

Z xb

xa

�Ipuiuj dxþ
Z xb

xa

XnD
k¼1

�IDp uiujDðx� xDkÞdx
A.3. Damping matrix of bearings
½Ce
b� ¼

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½C22�3�3 ½C23�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½C32�3�3 ½C33�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3

266666664

377777775
18�18
in which
C22
ij ¼

Z xb

xa

Xnb
k¼1

Cbk
YYuiujDðx

(
� xbkÞ

)
dx

C23
ij ¼

Z xb

xa

Xnb
k¼1

Cbk
YZuiujDðx

(
� xbkÞ

)
dx

C33
ij ¼

Z xb

xa

Xnb
k¼1

Cbk
ZZuiujDðx

(
� xbkÞ

)
dx
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C32
ij ¼

Z xb

xa

Xnb
k¼1

Cbk
ZYuiujDðx

(
� xbkÞ

)
dx
A.4. Stiffness matrix
½Ke� ¼

½K11�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½K16�3�3

½0�3�3 ½K22�3�3 ½K23�3�3 ½K24�3�3 ½K25�3�3 ½0�3�3

½0�3�3 ½K32�3�3 ½K33�3�3 ½K34�3�3 ½K35�3�3 ½0�3�3

½0�3�3 ½K42�3�3 ½K43�3�3 ½K44�3�3 ½K45�3�3 ½0�3�3

½0�3�3 ½K52�3�3 ½K53�3�3 ½K54�3�3 ½K55�3�3 ½0�3�3

½K61�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½0�3�3 ½K66�3�3

26666664

37777775
18�18
in which
K11
ij ¼

Z xb

xa

A11

oui

ox

ouj

ox
dx

K16
ij ¼

Z xb

xa

ksB16

oui

ox

ouj

ox
dx

K22
ij ¼

Z xb

xa

ksðA55

(
þ A66Þ

oui

ox

ouj

ox
þ
Xnb
k¼1

Kbk
YYuiujDðx� xbkÞ

)
dx

K23
ij ¼

Z xb

xa

Xnb
k¼1

Kbk
YZuiujDðx

(
� xbkÞ

)
dx

K24
ij ¼

Z xb

xa

� 1

2
ksB16

oui

ox

ouj

ox
dx

K25
ij ¼

Z xb

xa

�ksðA55 þ A66Þ
oui

ox
uj dx

K33
ij ¼

Z xb

xa

ðksðA55

(
þ A66ÞÞ

oui

ox

ouj

ox
þ
Xnb
k¼1

Kbk
ZZuiujDðx� xbkÞ

)
dx

K32
ij ¼

Z xb

xa

Xnb
k¼1

Kbk
ZYuiujDðx

(
� xbkÞ

)
dx

K34
ij ¼

Z xb

xa

ksðA55 þ A66Þ
oui

ox
uj dx

K35
ij ¼

Z xb

xa

� 1

2
ksB16

oui

ox

ouj

ox
dx
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K44
ij ¼

Z xb

xa

ksðA55

�
þ A66Þuiuj þ D11

oui

ox

ouj

ox

�
dx

K42
ij ¼

Z xb

xa

� 1

2
ksB16

oui

ox

ouj

ox
dx

K43
ij ¼

Z xb

xa

ksðA55 þ A66Þui

ouj

ox
dx

K45
ij ¼

Z xb

xa

1

2
ksB16

oui

ox
uj �

1

2
ksB16ui

ouj

ox
dx

K55
ij ¼

Z xb

xa

ksðA55

�
þ A66Þuiuj þ D11

oui

ox

ouj

ox

�
dx

K52
ij ¼

Z xb

xa

�ksðA55 þ A66Þui

ouj

ox
dx

K53
ij ¼

Z xb

xa

� 1

2
ksB16

oui

ox

ouj

ox
dx

K54
ij ¼

Z xb

xa

� 1

2
ksB16

oui

ox
uj þ

1

2
ksB16ui

ouj

ox
dx

K66
ij ¼

Z xb

xa

ksD66

oui

ox

ouj

ox
dx

K61
ij ¼

Z xb

xa

ksB16

oui

ox

ouj

ox
dx
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