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Abstract

A simple spinning composite shaft model is presented in this paper. The composite shaft contains discrete isotropic
rigid disks and is supported by bearings that are modeled as springs and viscous dampers. Based on a first-order shear
deformable beam theory, the strain energy of the shaft are found by adopting the three-dimensional constitutive re-
lations of material with the help of the coordinates transformation, while the kinetic energy of the shaft system is
obtained via utilizing the moving rotating coordinate systems adhered to the cross-sections of shaft. The extended
Hamilton’s principle is employed to derive the governing equations. In the model the transverse shear deformation,
rotary inertia and gyroscopic effects, as well as the coupling effect due to the lamination of composite layers have been
incorporated. To verify the present model, the critical speeds of composite shaft systems are compared with those
available in the literature. A numerical example is also given to illustrate the frequencies, mode shapes, and transient
response of a particular composite shaft system.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite-material shafts have been sought as new potential candidates for replacement of the
conventional metallic shafts in many application areas. This may be attributed to the improved perfor-
mance of the shaft system resulting from the use of the composite materials. It was in fact demonstrated by
Faust et al. (1984) via testing the composite transmission shafts of twin-propeller helicopters that the
composite shaft not only is lighter in weight and has a lower vibration level, but also has greater strength
and a longer service life compared with its metallic counterparts. Accompanied by the development of
many new advanced composite materials, various mathematical models of spinning composite shafts were
also developed by researchers. They include Zinberg and Symonds (1970) who used an equivalent modulus
beam theory (EMBT) to model the composite shaft and compared the critical speeds with those of the tests
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they had performed. dos Reis et al. (1987) incorporated the Timoshenko beam theory with the Donnell thin
shell theory to derive the stiffness matrix of rotating composite shafts. They then adopted the approximate
finite element approach of Ruhl and Booker (1972) to derive the equations of motion of systems. The model
was used to analyze the critical speeds of thin-walled composite shafts.

Kim and Bert (1993) adopted a shell theory of first-order approximation to derive the governing
equations of the rotating composite thin-walled shafts. They used this model to analyze the critical
speeds of various types of composite shafts. Bert (1992) based on the Bernoulli-Euler theory developed
the governing equations of composite shafts. The model has included the gyroscopic as well as the
bending and torsion coupling effects. Bert and Kim (1995) further considered the Bresse—Timoshenko
beam theory and employed the Hamilton’s principle to derive the equations of motion of the composite
shafts. They found that the transverse shear deformation effect is important in the determination of the
critical speeds of the short shafts. Singh and Gupta (1996) presented two composite spinning shaft
models based on an EMBT and a layerwise beam theory respectively. In the latter shaft model, the
strain—displacement relations of the layerwise cylindrical shell theory considered by Alam and Asnani
(1984) were adopted. They found that a discrepancy exists between the critical speeds obtained from
these two models for the case of the unsymmetric laminated composite shaft, which they attributed to the
effect of the bending and stretching deformation. Song et al. (2001) developed a composite thin-walled
shaft model based on a thin-walled beam theory. This model was used to investigate the natural fre-
quencies and stability of the system subject to the variation of the axial edge load and the lamination
angle of the composite layer.

The shaft models being discussed above are mostly based on shell theories, or beam theories combined
with the strain—displacement relations of the shell theories, or a thin-walled beam theory. In this paper,
another simple composite shaft model based on a first-order beam theory is proposed. Here, however, the
pertinent strain—displacement and the constitutive relations for laminated composite shafts are directly
derived from those of three-dimensional continua through multiple coordinate transformations and the
thinness of the wall of the shaft is not assumed. The composite shaft is assumed supported by bearings,
which are modeled as springs and dampers, and has discrete isotropic rigid disks attached to it. The
governing equations of system are obtained by employing the extended Hamilton’s principle.

To determine the spinning shaft system’s responses, the numerical finite element method is used here to
approximate the governing equations by a system of ordinary differential equations. Based on these ap-
proximate equations the critical speeds of the spinning composite shaft systems are then analyzed. The
results are found in agreement with those found in the literature. For a further illustration of the present
shaft model, the frequencies, mode shapes, and the transient response caused by the unbalance force of a
rigid disk, of a particular spinning composite shaft system are given. The transient response of the spinning
shaft is obtained by using two independent procedures, the modal versus Newmark-f methods. The
closeness of the results obtained from these two approaches does indicate the correctness of the numerical
analyses performed in the paper.

2. Theoretical formulations
2.1. Composite shaft

Before apply the extended Hamilton’s principle, firstly, the kinetic energy and strain energy of the
laminated composite shaft will be derived. The constitutive relations for a lamina (see Fig. 1) in the
principal material directions (indicated by 1, 2 and 3) are given by (see e.g., the monograph of Vinson and
Sierakowski, 1986)
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Fig. 1. A typical composite lamina and its principal material axes.
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The above equation will be abbreviated as
{o} = [OH{e} (2)

where [Q] is the stiffness matrix. Consider an arbitrary layer of the laminate whose fiber direction makes an
angle n with respect to the x-axis of the cylindrical coordinate system (x,r, 0) as shown in Fig. 2. Then the
stress—strain relations of the components expressed in this chosen cylindrical coordinate system can be
written as (Vinson and Sierakowski, 1986)

Oxx On Q»n Q95 O 0 QO Exx
Go0 On On On 0 0 O €00
or L _ | Oz O O 0 0 O Err (3)
Tr 0 0 0 Qu Qs O Vio
Tar 00 0 Q5 Os 0 Var
Tx0 O O O 0 0 Oul 7w

Fig. 2. The definitions of the principal material coordinate axes on an arbitrary layer of the composite shaft.
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The above equation will be expressed in abbreviated form as

{o} = [Ol{e} (4)
where [Q] is the transformed stiffness matrix of the layer, and
[0] = 1] '[QlIT] " (5)
in which
m> w2 0 0 0 2mn
o om0 0 0 —2mn
0 0 1 0 O 0
71 = 0 0 0 m —-n 0 (6)
0 0 0 n m 0
—mn mn 0 0 0 (m>—n?

and
m=cosy, n=siny (7)

Next, the kinetic energy of the composite shaft will be derived. It is assumed here that the size and the shape
of the shaft’s cross-sections remain unchanged during the motion. For an arbitrarily point P on a typical
cross-section of shaft (referring to Fig. 3), its new position (resulting from the axial, bending, transverse
shear and torsion deformation, and the spinning of the shaft) can be described by using a set of reference
coordinates x'—y'—Z' fixed to the cross-section of shaft. According to the above assumption of the cross-
sections, the distance between point P and the center of the cross-section G will remain the same during the
motion. Hence, the displacement vector Rp/o, where point O (it coincides with the centroid G of the cross-
section before deformation) is the origin of an inertial Cartesian coordinate system, can be expressed as
(Chang and Jan, 1996)

Z(k)

2'(k")

Fig. 3. The displacement of an arbitrary point p on the cross-section of the shaft.
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—_ — — N N — v !
Rpjo = Rgjo + Rpjg = (ui +uvj +wk)+ (y/j +z’k) (8)
- . = VAN AN

In the above equation i, j, k are unit vectors of the inertia coordinate system X-Y-Z, and i, j, k are
those of rotating coordinate system x'—)/—Z’, while u, v, w represent the displacement components of the
centroid G of the cross-section of shaft in the X, ¥ and Z directions due to flexural deformation. By the use
of the coordinate transformation, the displacement vector Rp;o can be expressed in terms of the inertia
reference frame X-Y-Z as

EP/O = (u—yp,cosy +y'B,sinyy 4 2B, sinyy 42, cos xpﬁ

+ (v 4y cosy +y'B.B,sinyy —2'siny 4 2B, B, cos xp); + (w+y siny + 2 cos 1,0)% 9)

Here f,, B, Y can be regarded as the 3-2-1 set of Euler’s angles and represent the rotation angles of the
cross-sections about z, y and x axes respectively (see Fig. 4). The rotation angle ¥ can be resolved into two
parts as y = ¢ + Qt, where ¢ is the angular displacement of the cross-sections due to the torsion defor-
mation of the shaft, and Q is the spinning speed of shaft, which is assumed constant. On the derivation of
Eq. (9), the rotation angles f8,, 8, are assumed small compared with the unity. In the subsequent analysis,
the torsion angle ¢ will also be treated as a small quantity compared with the unity (Fig. 4).

In view of Eq. (9), the kinetic energy 7; of the composite shaft can be expressed as

1 AR
I, = 3 / p(Rpjo - Rpjo)dV
v

1 [t . . . . .
=5 / (i + 7 +97) + Lo+ B) = 20085, + 1§ + 200 + @1y + QLa(B; + ) }dx
0

(10)

where L is the total length of the shaft, the ZQIpﬂXB . term accounts for the gyroscopic effect, and Id(ﬁf + ﬁf)
represents the rotary inertia effect. The mass quantity /,, denotes the mass per unit length of the shaft, while
14 the diametrical mass of inertia and 7, the polar mass of inertia of the cross-section of the shaft. They are
defined as follows:

Fig. 4. The elastic displacements of a typical cross-section of the shaft.
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Fig. 5. The employed coordinate systems (a) and the definitions of the stress components (b), (c).
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Here 7 is the number of layers in the laminate, and r; and r;, | are the inner and outer radii of the ith layer.
As the Qzld(ﬁi + ﬂi) term in Eq. (10) is far smaller than Q°1,, it will be neglected in the further analysis. By
taking the first variation of kinetic energy yields

L .00u  0dv . Odw . 08f, , 00B, . 068,
6Ts—‘/o {Im<uE+UE+WF> +Id(ﬁr7+ﬂ‘,7) —IpQ(ﬁySﬂx+ﬁx ot )

+ I, pd¢ +1p96q5}dx (12)

To derive the strain energy expression of the composite shaft, the following form of the displacement
fields of the shaft are assumed.

ue(x, 3,2, t) = u(x,t) + zf.(x,t) — yB,(x,1)
uy(x,y,2,t) = v(x,t) — z(x, ) (13)
uz(xayaza t) = W(xv t) +y¢(~x7 t)
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where u,, u, and u. are the flexural displacements of any point on the cross-section of the shaft in the x, y
and z directions. As shown in Fig. 4, the variables u, v and w denote the flexural displacements in the x, y
and z directions of the points on the reference axis of the shaft, while ¢, . and /5, are the rotation angles of
the cross-section, about the x-, y- and z-axis respectively, due solely to the elastic deformation of the shaft.
Here the x—y-z is a coordinate system attached to a translating frame with the origin located at the center of
the cross-section such that its axes remain parallel to the inertia reference frame X-Y-Z.
The linear elastic and small deflection theory is adopted in this paper. According to this theory, the linear
strain—displacement relations based on the above displacement assumption can be shown to be
8XX = % + aﬁ y%
Ox Ox ox
gy =6,=26,=0

1 v 0 (14)
&w—i(‘ﬁv*a ax>

B ow o
8*‘22<ﬁ +6+y6x)

Since the shapes of the cross-sections of the composite shaft are assumed circular, it is more convenient to
express the stress—strain relations of the composite material of the shaft using the cylindrical coordinate
system (Fig. 5). The strain components in this coordinate system can be expressed in terms of their
counterparts in the Cartesian coordinate system as (see, e.g., a textbook by Fung, 1994)

Erx 1 0 0 0 0 07 ( &
€00 0 n m* 0 —2mn 0 &y
e | _ 0 m* n* 0 2mn 0 & (15)
&0 0 0 0 -—n 0 m Exy
&1 0 —mn mn 0 (m>—n?) 0 &y
Eyr LO 0 0 m 0 nl \e.

Here m = cos 0 and n = sin 0. Considering Eqs. (14) and (15) and letting y = rcos 0, z = rsin 0, the strain
components in the cylindrical coordinate system can be written in terms of the displacement variables
defined earlier as

~ Ou . 0B, aﬁy
t =g TS0 3
1/ v ¢
axg——(ﬁymn(?—&-ﬂxcos@—mn(?a——kco Ha—kra) (16)

ow ov
Exr (ﬁ sin0 — B, cosO~t—s1n()a +cos0a ) =& =69=20

The stress—strain relations of the ith layer expressed in the cylindrical coordinate system can be expressed as

Oxx = @Hisxx + kS@]()iyx(?
T = st16i8xx + stéﬁiny (17)
Tor = kS@SSiyxr

where k; is the shear correction factor proposed by Dharmarajan and McCutchen (1973).
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The strain energy of the composite shaft U; can be written as
1 T 1
Us = E [O-] [8] dr = E (O-xxgxx + G + OppEop + 2Txrgxr + ZTXHS,\:Q + 2Tr9£r9)dV (18)
V 4
Taking variation of the above strain energy expression and considering Eq. (16), one obtains

dU, = / (008, + 27,08y, + 27,90¢,9)dV
V

00p,
:/ O @+rsin068ﬁ"—rcos0i + Ty sinOSﬁX—cos08ﬁv+cos0@+sin068—w
" ox Ox Ox ) Ox Ox

35 w08
+ 10 cos 08, + sin 056, — sin 0220 + c0s 022 4 -0 gy (19)
4 Ox Ox Ox

Define the following stress resultants N,, O\, 02, Qi};), Qfe) and stress couples M,, M., M,y as

Nx:/amdA, My:/amrsianA,
A A

MZ:/axxrcostA, MXUZ/‘EondA,
A A

(20)
ol = /A 1,sin0d4, 0P = /A 1, cos 0d4,
o = /A tosinfdd, 0 = /A T cos 0dA.
Making use of the variables defined in Eq. (20), Eq. (19) can be written as
su.= | ' {Nx%+My% 2P, B 1 0)3p, -~ (02 - 0o,
08 - 0 T+ (0 + 0 B fas a1

Furthermore, by taking into account of Egs. (16) and (17), the stress resultants and stress couples defined in
Eqgs. (20) can be expressed in terms of the displacement variables as



M.-Y. Chang et al. | International Journal of Solids and Structures 41 (2004) 637-662 645

ou 0¢
N, =4 kB
nae + 16 3¢
op. o
M, =D — - + = kBm(,B a)
op, 1 ow
Mz__Dll o E S (ﬂx—i_a)
ou 0
My = kBi6 = + kiD= ¢
Ox Ox
ow (22)
Q —kAss(ﬁ + = )
0 = kdss| — p +—U
xr s y ax
3B o
Qve = kBléa +k1466(ﬁ a)

1 op ow
Q,i? =- EksBm a_xy + ksAge (ﬂx + 6_x)

in which

An = RZQII[(F,«Z+1 -r
=1
T~7A (2 2
Ass =5 ZQSSi(ri+l -7
=1
TS~7A (2 2
Ase =5 ZQsei(”m —ri)
=1
2 ~5 3 3
B = 3 ZQl6i(ri+1 —r)
=1
TS~7 4 4
Dy = 1 ZQni(rm =)
i1

T o= —
Des = 5 Z O (11 — 1)
P

(23)

2.2. Kinetic energy of disks

The disks fixed to the shaft are assumed rigid and made of isotropic materials. According to Eq. (10) the
kinetic energy of the disks can be expressed as

L nD . . . . .
/ ID (@ + 0 + W) + ID(B: + B)) — 2QIDB.B, + 10" +2QID ¢ + QZIB}A(x — xp;)dx

(24)
where In?j, 13. and Ir?j are the mass, the diametrical mass moment of inertia and the polar mass moment of
inertia of the disk j. The symbol 4(x — xp;) denotes the one-dimensional spatial Dirac delta function, np the
number of the discrete disks attached to the shaft and xp; the location of the jth disk. Taking variation of
Tp yields
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L "D 65u 681) . Odw . 00f . 00
3Tp = Vi z 4
P / { < T T 6t)+d’<"6t b, at)

: 5P, . .
—1;39( R ) +1§¢5¢+1§Q6¢}A(x—xm)dx (25)

2.3. Work of external loads and bearings

Supposed that the shaft is subjected to external force intensities (force per unit length) p,, p, and p., and
external torque intensities (moment per unit length) I'y, I, and I'yy distributed along the shaft. All external
loads are assumed to be functions of x and ¢. Then the virtual work done by these external loads can be
written as

L
SI, — / (bt + pB0 -+ pudw + T,8B, + I8, + [ydp)dx (26a)
0

The stiffness and damping effects of the bearings are modeled using springs and viscous dampers. The
virtual work done by these elements can be expressed as (Lalanne and Ferraris, 1990)

W, = / —Kvdv — Ko vdw — K2wdv — Kohwdw — Coodi — Covdw — Coowdi — CLwdw)
x 4 (x — Xp;)dx (26b)

Here n, denotes the number of the bearings, xy,; the location, and K and C% the equivalent stiffness and
damping coefficients of the jth bearings.

2.4. Governing equations of system
By taking into account of the energy expressions derived above and invoking the extended Hamilton’s
principle (see, e.g., Meirovitch, 1990), which is
5]
/ (5T, + To) — 8Us + 8W, + 8WJdi = 0 (27)

41

The equations of the motion can be shown to be the following:

u

ou : xD/) = Dx

o? aQ 6Q b o2

- _ X7 by -
o0 or? ox Ox + Im/ or (x — xp;) + Fy =p,

w007 200 M p Fw )
ow : Imﬁ—ﬁ—ﬁﬁ‘zllmjﬁﬁ(x—xDj) +FW =P

62ﬁ oB, . (28a)
o +]Q§_—+QXO+QXV+Z dj azx x —xp;) = I

zﬁ 6ﬁ o?

Bﬁ _] ot x()_ xr +Z dlaZyA(x_xD/):F’

a ¢ a]‘4)5()
8p: Iy~ Zlgwgl —xp;) = T
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where

ny
Fp :Z( Yo+ KD w—i—C';Jyv—&—CYZw) (x — x)
J=1

(28b)

"y
=Y (Kggw + Ko+ Cow + cgfyi;) Ax — xv))
=
In view of Eq. (28a) and the stress resultant—displacement and stress couple—displacement relations,
Eq. (22), the governing equations of the composite shaft systems can be shown to be the following:

Qu Qu e
Ou : [ma Alla > kBm +Z mj 61‘2 xDj):px
v op, % 1 D
v : ]mazz+ks(A55+A66)(6)cya)c2> Bis a 2 mjﬁﬁ —xp) +F) =p,
Pw Pw 0B, 1 2 b
ow : [mﬁ_ks(ASS +A66)(@+ ox ) _EksBI() Z mj 6t2 xD./')J'_FW:PZ
62 op, v 0? ow
Sﬁ ‘B + 1 Qa—+ kBlGa 2 D11 aﬁZ kS(A55 +A66)(§+ﬁx>
(29)
kBl6 +Z d, —xpj) =T,
2/3 0B, 1 , ow B, ov 3B,
Sﬁ —|—1 Q or 16@ 5 — Dy —= o ks(A55 +A66) (a— ﬁy> + kB o
Z dj atz x_xDj):Fy
) Pu
8¢ . Ip atz kB]6 o 5 kD66 + Z pj at2 xDj) = Fx(y

The boundary conditions of the system are defined by specifying at both ends of the shaft the value of only
one variable from each pair of the following six pairs of variables: (Ny, u), (O,,v), (0-,w), (M,, p,), (M-, B,),
and (My, ¢). Here 0, = 0% — 0/ and 0. = Q) + 0.

Next, the analysis of responses of the spinning shaft’s systems based on the above shaft model will be
discussed.

2.5. Approximate solution method

The finite element method is used here to find the approximate solution of the system. By employing this
method, the governing equations are approximated by a system of ordinary differential equations. In the
present finite element model, the three-node one-dimensional line elements, each node having 6 degrees of
freedom, interpolated using Lagrangian interpolation functions are used to approximate the displacement
fields of shaft. The displacement field variables can then be expressed as



648 M.-Y. Chang et al. | International Journal of Solids and Structures 41 (2004) 637662

=3 we,x), B.= > D)

in which

_E(1 —
wlzﬁ, Py=1-8, ¢3==

The ¢;, i =1, 2, 3, are the interpolation functions and ¢ is the natural coordinate whose values varies
between —1 and 1. Substituting the above expressions of displacement variables into the governing equa-
tions and applying the Galerkin procedure, the following matrix equations of motion of the spinning shaft
system can be found.

[MI{g} + (Q[6] + [C){g} + [KI{q} = {F} (31)

where [M] represents the mass matrix, [G] the gyroscopic matrix, [C] the damping matrix, [K] the stiffness
matrix, {F} the external force vector and {g} the displacement vector. The detailed expressions of these
matrices can be found in Appendix A.

The damping matrix [C] has included in addition to the viscous damping of the bearings the proportional
viscous damping of the shaft. It can be expressed as

[C] = [Co] + [Gy] (32a)
where

[Cy) = [M][][C][@]" [M] (32b)

(@] M][@] =11, [@]"[K][®] = [4] (33a,b)

and

[C] = 205003 (33¢c)

2 ywy

in which w; and ¢; are the natural frequencies of the undamped non-rotating shaft system and the modal
damping ratios respectively.

In the following section the responses of the spinning composite shaft system are studied based on the
approximate equations of motion, Eq. (31).
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3. Numerical examples

In the following examples, first, the lowest critical speeds of composite shafts are analyzed and compared
with those available in the literature to verify the present model. Several methods can be used to determine
the critical speeds of a rotating shaft. They include the commonly known Campbell diagram method (see
e.g., Lalanne and Ferraris, 1990), as well as the whirling frame method (only suitable for the undamped
systems) and the sensitivity method. The latter two methods were developed by Nelson and Mcvaugh
(1976) and Nelson et al. (1986), and are adopted in this paper.

In the first example, the composite hollow shafts made of boron/epoxy laminae, which are considered by
Bert and Kim (1995), are investigated. The properties of the material are listed in Table 1. The shaft has a
total length of 2.47 m. The mean diameter D and the wall thickness of the shaft are 12.69 cm and 1.321 mm
respectively. The lay-up is [90°/45°/-45°/0°/90°] starting from the inside surface of the hollow shaft. A
shear correction factor of 0.503 is also used. The shaft is modeled by 20 finite elements of equal length. The
supporting bearings are modeled as springs whose stiffness are K,, = K., = 1740 GN/m and K,, = K,, = 0.
The result obtained using the present model is shown in Table 2 together with those of referenced papers.
As can be seen from the table our results are close to those predicted by other beam theories. Since in the
studied example the wall of the shaft is relatively thin, models based on shell theories (Kim and Bert, 1993)
are expected to yield more accurate results. In the present example, the critical speed measured from the
experiment however is still underestimated by using the Sander shell theory while overestimated by the

Table 1
Properties of composite materials (Bert and Kim, 1995)
Boron—-epoxy Graphite-epoxy
Ey (GPa) 211.0 139.0
E» (GPa) 24.1 11.0
G]z = G13 (GPa) 6.9 6.05
Via 0.36 0.313
Density (kg/m?®) 1967.0 1578.0

Table 2
The critical speed of the boron—epoxy composite shaft
Theory or method First critical speed (rpm)
Zinberg and Symonds (1970) Measured experimentally 6000
EMBT 5780
dos Reis et al. (1987) Bernoulli-Euler beam theory with stiffness deter- 4942
mined by shell finite elements
Kim and Bert (1993) Sanders shell theory 5872
Donnell shallow shell theory 6399
Bert (1992) Bernoulli-Euler beam theory 5919
Bert and Kim (1995) Bresse-Timoshenko beam theory 5788
Singh and Gupta (1996) EMBT 5747
LBT 5620

Present Continuum based Timoshenko beam theory 5762
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Donnell shallow shell theory. When the material of the shaft is changed to the graphite—epoxy given in
Table 1 with other conditions left unchanged, the critical speed obtained from the present model is shown in
Table 3. In this case, the result from the present model is compatible to that of the Bresse-Timoshenko
beam theory of Bert and Kim (1995).

Next, comparisons are made with those of Bert and Kim (1995) for different length to mean diameter
ratios, L/D. The shafts being analyzed are made of the graphite—epoxy material given in Table 1 and all
have the same lamination [90°/45°/—45°/0°¢/90°]. The mean diameter and the wall thickness of the shaft
remain the same as the previous examples. The shear correction factor being used is again 0.503. The results
are listed in Table 4. Further results being compared are for generalized orthotropic composite tube of
different lamination angles 5. The results are shown in Table 5.

From the thin-walled shaft systems studied above, the present shaft model yields results in all cases close
to those of the model of Bert and Kim (1995) based on the Bresse—Timoshenko theory. One should stress
here that the present model is not only applicable to the thin-walled composite shafts as studied above, but
also to the thick-walled shafts as well as to the solid ones.

Table 3
The critical speed of the graphite-epoxy composite shaft
Theory First critical speed (rpm)
Bert and Kim (1995) Sanders shell theory 5349
Donnell shallow shell theory 5805
Bernoulli-Euler beam theory 5302
Bresse-Timoshenko beam theory 5113
Present Continuum-based Timoshenko beam theory 5197
Table 4
The critical speed (rpm) of graphite-epoxy composite shaft for various length to mean diameter ratios
Theory L/D
2 5 10 15 20 25 30 35
Bert and Kim Sanders shell 112,400 41,680 16,450 8585 5183 3441 2440 1816
(1995)
Bernoulli-Euler 329,600 76,820 20210 9072 5121 3283 2282 1677
Bresse-Timoshenko 176,300 54,830 17,880 8543 4945 3209 2246 1658
Present 181,996 55,706 17,929 8527 4925 3192 2233 1648
Table 5
The critical speeds (rpm) of the generally orthotropic of graphite-epoxy composite shaft for various lamination angles
Theory Lamination angle 7 (°)
0 15 30 45 60 75 90
Bert and Kim Sanders shell 5527 4365 3308 2386 2120 2020 1997
(1995)
Bermoulli-Euler 6425 5393 4269 3171 2292 1885 1813
Bresse-Timoshenko 6072 5209 4197 3143 2278 1874 1803

Present 6072 5331 4206 3124 2284 1890 1816
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In the following example, the frequencies, mode shapes, as well as the transient response, of a graphite—
epoxy composite shaft system are analyzed. The material properties are those listed in Table 1. The lam-
ination scheme of the shaft remains the same as previous examples, while its geometric properties, the
properties of a uniform rigid disk, and the properties of the springs and viscous dampers modeling the
support conditions are listed in Table 6. The disk is placed at the mid-span of the shaft and assumed its
center of mass have a small distance of eccentricity e away its geometric center. The shaft system is shown in
Fig. 6. For the finite element analysis, the shaft is divided into 6 elements of equal length.

First, the Campbell diagram containing the frequencies of the first five pairs of bending whirling modes
of the above composite system is shown in Fig. 7. Denote the ratio of the whirling bending frequency and
the rotation speed of shaft as y. The intersection point of the line y = 1 with the whirling frequency curves
indicate the speed at which the shaft will vibrate violently (i.e., the critical speed). In Fig. 7 the second pair
of the forward and backward whirling frequencies falls more wide apart in contrast to other pairs of
whirling modes. This might be due to the coupling of the pitching motion of the disk with the transverse
vibration of shaft. Note that the disk is located at the mid-span of the shaft, while the second whirling
forward and backward bending modes are skew-symmetric with respect to the mid-span of the shaft as
shown Fig. 9. Next, consider the case that the shaft starts from rest and assume it instantly arrives at the
speed of 6000 rpm. The first 10 eigenvalues that correspond to 5 forward (F) and 5 backward (B) whirling
bending modes of the shaft running at 6000 rpm are listed in Table 7. The mode shapes corresponding
to these eigenvalues modes are illustrated in Figs. 8-12. In these figures, the modes are shown in the

Table 6
The dimensions and properties of the composite shaft system
Shaft Disk Bearings
Total length (m) 0.72
Modal damping ratios 0.01
Inner diameter (m) 0.028
Outer diameter (m) 0.048
Shear correction factor 0.56
1P (kg) 2.4364
e (10° m) 5.0
1P (kgm?) 0.3778
1P (kgm?) 0.1901
K,, =K.. (10" N/m) 1.75
C,, = C.. (10> N's/m) 5.0
disk

> N

mass center
. __/

V><

H [leo

L2

A

Y Hgﬂ
H

.

N

Fig. 6. A bearings-supported flexible shaft containing a rigid disk.
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Fig. 7. The Campbell diagram of a composite shaft system ((—) forward modes, (- --) backward modes).

Table 7

The eigenvalues corresponding to the lowest five forward and backward whirling bending modes of the composite shaft running at
6000 rpm

Mode Real part Imaginary part
1B —9.985 902.867
IF -9.996 903.566
2B —-8.530 826.702
2F -21.681 2048.076
3B —423.449 7841.506
3F —423.385 7868.068
4B —484.578 8215.352
4F —484.748 8218.171
5B —-1513.563 16305.428
5F —-1511.597 16332.143

three-dimensional reference frame as well as in two-dimensional projected views. It can be seen that the first
and fourth modes are symmetric while others are the anti-symmetric bending modes.

Lastly, the transient response of the above composite shaft system is illustrated. The vibration of the
shaft is caused by the centrifugal force resulting from the unbalanced rigid disk. For the purpose of the
verification of the numerical results, the transient response of the composite shaft is obtained by using two
different approaches. In the first method, the transient response is obtained by integrating directly the finite
element equation, Eq. (31), using the Newmark-f algorithm, while in the second approach, Eq. (31) is
solved using the modal analysis method as was done in Chang and Jan (1996). The steady state response of
the shaft determined by the method proposed by Nelson and Mcvaugh (1976) is also shown in the figures
for comparison. In the simulation, the time step of 0.0002 s is adopted in both Newmark-f and the modal
analysis methods. The first four pairs of forward and bending whirling modes in Table 7 are considered in
the modal analysis method. The total time-interval of simulation is 0.24 s. The transverse displacements of
the geometric center of the disk in the directions of the inertia coordinate Y and Z obtained respectively
using the above two methods are plotted in Figs. 13 and 14. The two figures look very similar. It can be seen
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Fig. 8. The first backward (a) and forward (b) whirling bending mode shapes of a composite shaft system running at 6000 rpm.

from the figures that though the transient response starts with a fluctuation of displacement, it converges
quite rapidly to the steady response as a result of the damping action.

4. Concluding remarks

A simple composite spinning shaft model is presented in this paper. By employing multiple transfor-
mations of coordinate systems, a spinning isotropic shaft model considered previously by Chang and Jan
(1996) is extended here to the case of laminated composite shafts. It has been demonstrated that our
continuum-based beam model is compatible to some beam theories available in the literatures. The present
model can be served as a viable alternative for the vibration analysis of the spinning laminated composite
shafts.
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Fig. 9. The second backward (c) and forward (d) whirling bending mode shapes of a composite shaft system running at 6000 rpm.
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Appendix A. Mass, gyroscopic and stiffness matrices of the laminated composite shaft elements

The nodal generalized displacements {¢°} is a column matrix whose transpose is defined as
{a" = {{Usy ey sy By (o)}

The corresponding element matrices are as follows:

1x18
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Fig. 13. The transient response of the displacement at the disk center obtained using the Newmark-f method compared with the
steady-state response.
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Xb xXp "D
M;f = / Lo, dx + / > 1200, A(x — xpi)dx
Ya Yo k=1

A.2. Gyroscopic matrix

_[0]3><3 [0]3><3 [0]3><3 [O]Sx'% [O]3x3 [O]3x3_
035 [0 [0 [0ss  [Oss [0
6] = (05,5 [Olss [05.5  [0]5,5 05,5 [0]5,5
[0]3><3 [O]3><3 [0]3><3 [O]3x3 [G45]3><3 [0]3><3
[0]3><3 [O]3><3 [0]3><3 [G54]3><3 [O]3x3 [O]3x3
L0550z [Ous  [Ohs O Olusd isas
in which

A.3. Damping matrix of bearings

_[0]3><3 [0]3><3 [0]3><3 [0]3><3 [O]3><3 [0]3><3_
[0]3><3 [C22]3><3 [C23]3><3 [0]3><3 [0]3x3 [0}3><3
[Ce] — [0]3><3 [C32]3><3 [C33]3><3 [0]3><3 [0]3><3 [0}3><3
b [0]3><3 [0]3><3 [0]3><3 [0]3><3 [0]3><3 [0}3><3
[0]3><3 [0]3><3 [0]3><3 [0]3><3 [0]3><3 [0}3><3
—[0]3><3 [0]3><3 [0]3><3 [0]3><3 [0]3><3 [0}3><3— 18x18
in which
2= /Xb { N Covp,p,4(x —xbk)}dx

3

Xp n
Ci2j3 — / { Cglzcgoigojzl(x - xbk)}dx
Xa k=1

Xp n
Cig — / { CE;QDIQDIA (X — ka)}dx
Xa k=1

=3
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Xp Ny
Ci3j2 :/ {ZCZngD (ij(x—xbk)}dx

k=1

A.4. Stiffness matrix

K'"5s [0l Ok [Os [0y K5,

[0]3><3 [Kji]%d [ij]bd [K§:]3><3 [sz]bd [0]3><3

[ e]: [O]3><3 [K ]3><3 [K ]3><3 [K ]3><3 [K ]3><3 [O]3><3
[0]3><3 [K42]3><3 [K43]3><3 [K44]3><3 [K45]3><3 [0]3><3
[06]13><3 [K52]3><3 [K53]3><3 [K54]3><3 [K55]3><3 [06]63><3
[K ]3><3 [0]3><3 [O}3><3 [0]3><3 [0]3><3 [K }3><3 18x18

in which
11 " Op; 09
Kij :[ A1] ax a—jdx

K? = ! k. 00, 09; | N e
i = s(Ass + Aee) . —erZKYYgDiq)jA(xfxbk) dx

A | 0p; 0,
24 _ i )
K% = / kB dx

25 xb 0o
K> = —ky(4ss +A66)a@/dx

K.3_3:/Xb{
ij .
K2 = /{Z 04 x—xbk)}dx

34 " 0p;
K= ks(Ass +A66)§(dex

a
(ks(Ass + Aes)) (pl +2Kbk<P(P, x_xbk)}dx
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6907 aq)j }dx

Xp
K;‘;‘ = / {k (Ass + Ags)Pip; + Diy —— ox ox

o, 0p;
Kzisis :/ {k (Ass + Aes)p;0; + Dt = ax ox - }dx

5 v 09,
Ki/ = —ks(A55 +A66)§0i§ dx

Xp 1 an 6(0
K3 = — kB 2 dx
/Xa 27718 o

o1 00, 1 0p;
k= / ke ¢+ ghBisg 7 dx

0, 0
K% = Dgg— —2
ij /H ksDss ox a

X d 0.
Ko = / kiBrg 2 1 gy

Ox Ox
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